R N T

D N A R
he \‘:'-.\\sf\ W\ . 2
‘\ \\\‘\ \\ -
e \.

"~ TR
/ ;
e il : ’
y A v %
y P ’
"
B ~

- INTRODUCTION TO OPENACC
BRENT LEBACK, MEMBER OF THE NVIDIA HPC SDK TEAM

OPENACC RESOURCES

Guides e Talks e Tutorials e Videos e Books e Spec e Code Samples e Teaching Materials e Events e Success Stories e Courses e Slack e Stack Overflow

FREE
Compilers

NVIDIA.

NVIDIA HPC SDK. Free download.

Resources
https://www.openacc.org/resources

OpenACC g

About Tools News Events ec Community

Resources

A complete library of OpenACC materials that includes a collection of video tutorials, guides, online courses, books and more,

w Guides Q Books

Introduction to OpenACC Quick Guides Paraliel Programming with OpenACC

« OpenACC Programming and Best Practices Guide
« OponACC 2.5 AP Roforence Card

4 Tutorials
. Programming Massivoly Paraliel Processors, Third

Video tutorials to holp start with OpenACC and advance your skills Edition: A Hands-on Approach

Compilers and Tools
https://www.openacc.org/tools
OpenACC

More Science, Less Programming

About Blog News Stories Events Resources Spec Community

Downloads & Tools

OpenACC compilers, profilers and debuggers are designed and available to download from multiple vendors and academic organizations.

Commercial Compilers Open Source Compilers
Q2 A 7 WEp— . (O\ A
Hewlett Packard S 2| | Es @@+ EFTEnl ,
7 ' - Natonal Supercomputing Center in Wux
Enterphise NVIDIA i
Contact HPE for more information. NVIDIA HPC SDK. Free download. Contact National Supercomputing GCC10

Center in Wuxi for more information. Includes support for OpenACC 2.6

SIEMENS
Ihg&««ui‘y{or(a{t

AMD ¢

Sourcery CodeBench (AMD GCN) Lite for X86_64 GNU/Linux

sSuccess Stories

https://www.openacc.org/success-stories
OpenACC

More Science, Less Programming .
s GO About Tools News Events Resources Spec Community

Success Stories

Applications across multiple domains have been accelerated with OpenACC. Scientists and researchers who have been working on these applications
are sharing their results and experiences.

Learn how OpenACC can simplify parallel Anne Severt shares how she is using OpenACC to

programming and deliver high performance results simulate smoke propagation in underground metro
stations.

Researchers are using GPUs and OpenACC to
accelerate the codes for their data-driven simulations

>Watch more OpenACC Videos on YouTube

Events

https://www.openacc.org/events
OpenACC

More Science, Less Prog ming :
I P About Tools Resources Spec Community

Events

The OpenACC Community organizes a variety of events throughout the year. Events vary from talks
at conferences to workshops, hackathons, online courses and User Group meetings. Join our events

around the world to learn OpenACC programming and to participate in activities with the OpenaCC

User Group.
Hackathons 2017 Calendar
Hackathons are five day intensive hands-on mentoring sessions.They are designed to help computational m WORKSHOP
scientists port their applications to GPUs using libraries, OpenACC, CUDA and other tools. They are currently 15 Parallel Programming with OpenACC on
x : : vz : : CPUs and GPUs
lead by the Oak Ridge Leadership Computing Facility (OLCF) at the Oak Ridge National Laboratory (ORNL). For # August 15, 2017 | @ Stanford University, Palo
the full schedule and registration details please visit: https://www.olcf.ornl.gov/training-event/2017-gpu- Alto, CA
bacloathanel —

<X NVIDIA.

https://www.openacc.org/resources
https://www.openacc.org/success-stories
https://www.openacc.org/events
https://gcc.gnu.org/wiki/OpenACC
https://www.openacc.org/tools

BASIC SYNTACTIC CONCEPTS

Directive-Based Programming Designed for Accelerated Computing

C/C++ OpenACC pragma syntax

#pragma acc directive [clause]... eol

continue to next line with backslash

Application Code

Fortran OpenACC directive syntax

'Sacc directive [clause]...
& continuation —

o~

Compute-Intensive Functions . '
5% of Code

Rest of Sequential

Fortran-/7 syntax rules CPU Code

!Sacc or CSacc or *Sacc in columns 1-5

continuation with nonblank in column 6

Directives are roughly divided into 2 groups
Compute Directives
Data Management Directives

There is also a runtime API, typically used for device
selection, other less-used functionality

Slide 3 NVIDIA

OPENACC KERNELS CONSTRUCT

The kernels construct expresses that a region may contain parallelism and the compiler
determines what can safely be parallelized.

#pragma acc kernels

{ ~

for (int 1=0; i<N; i++)

{
ali] = 0.0; - kernel 1
bl[i] = 1.0;
cl[i] = 2.0;

} _/

for (int 1=0; i<N; i++)

1 . ‘ . ~ kernel 2
ali] = b[1] + c[1i]

} B

<A NVIDIA.

OPENACC PARALLEL LOOP DIRECTIVE

Parallel: a parallel region of code. The compiler generates a parallel kernel for that

region.

Loop: identifies a loop that should be distributed across threads. Parallel and loop are

often placed together.

#pragma acc parallel loop
for (int 1i=0; i<N; i++) {
\ yl1] = a*x[1] + y[1];

<alternatively>

#pragma acc parallel

1

#pragma acc loop
for (int 1=0; i<N; i++) {
\ y[1] = a*x[1] + y[1];

} //end parallel in Fortran

'\

1 parallel
kernel

<A NVIDIA.

GANG, WORKER, AND VECTOR CLAUSES

The developer can instruct the compiler
which levels of parallelism to use on

given loops by adding clauses:

gang - Mark this loop for gang
parallelism

worker - Mark this loop for worker
parallelism

vector - Mark this loop for vector
parallelism

These can be combined on the same loop.

#pragma acc parallel loop gang
for(1 = 0; 1 < size; i++)
#pragma acc loop worker
for(j = 0; j < size; j++)
#pragma acc loop vector
for(k = 0; k < size; k++)

cli]{J] += al1i][k] * b[k][]];

#pragma acc parallel loop \
collapse(3) gang vector
for(1 = 0; 1 < size; i++)
for(j = ©0; j < size; j++)
for(k = 0; k < size; k++)
clif[J] += ali]lk] * b[k][J];

NVIDIA.

ADJUSTING GANGS, WORKERS, AND VECTORS

Useful when you know more about the loop bounds than the compiler

The compiler will choose a number of
gangs, workers, and a vector length for
you, but you can change it with
clauses.

num_gangs(N) - Generate N gangs for
this parallel region

num_workers(M) - Generate M workers
for this parallel region

vector_length(Q) - Use a vector length
of Q for this parallel region

#pragma acc parallel num gangs(N) \

1

num workers(2) vector length(32)

#pragma acc loop gang worker
for(int x = 0; x < N*2; x++) {
#pragma acc loop vector
for(int y = 0; y < 32; y++) {
array [x|y]++;

}
}

Slide 7

NVIDIA.

SEQ CLAUSE

The seqg clause (short for sequential) will tell the compiler to run the loop
sequentially

In the sample code, the compiler will parallelize the outer loops across the
parallel threads, but each thread will run the inner-most loop sequentially

The compiler may automatically apply the seq clause to loops as well, if it knows
the count is short, or contains a loop-carried dependency

#pragma acc parallel loop
for(1 = 0; 1 < size; i++)
#pragma acc loop
for(j = 0; j < size; j++)
#pragma acc loop seg
for(k = 0; k < size; k++)

cli]{J] += a[i]lk] * b[k][]J];

NVIDIA.

OPENACC COLLAPSE CLAUSE

Collapse(n): Applies the associated directive to the following n tightly nested loops

Useful when loop extents are short, or there are more loops than levels (gang,
worker, vector) available

#pragma acc parallel #pragma acc parallel

#pragma acc loop collapse(2) #pragma acc loop

for (int i=0; i<N; i++) for (int 1j=0; ij<N*N; ij++)
for (int j=0; Jj<N; Jj++) 1 iy

13 / N;
; " ,

NVIDIA.

CALLING USER ROUTINES IN DEVICE CODE

Use the same set of gang, worker, vector, seq to specify the parallelization level

I OpenACC I OpenACC

real function fs(a)

fs = a + 1.0
end function

subroutine fv(a,j,n)

real :: a(n,n)

l$acc loop vector

do 1 =1, n

a(i,j) = fs(a(i,]))
enddo
end subroutine

subroutine fg(a,n)

real :: a(n,n)
l$acc loop gang
do J =1, n

call fv(a,j,n)
enddo
end subroutilne

program main

l$acc parallel
call fg(a,n)

l$acc end parallel

end program

Slide 10

NVIDIA.

REDUCTION CLAUSE

The reduction clause takes many values

and “reduces” them to a single value, such for(1 = 0; 1 < size; i++)
as in a sum or maximum for(J = 05 J < size; j++)
for(k = 0; k < size; k++)
c[i][J] += a[i][k] * b[k][]];

Each thread calculates its part

for(1 = 0; 1 < size; i++)
Reductions can be over all gangs in the for(1J =95 J < 512.93 J++)
kernel, or within a gang double tmp =

#pragma acc parallel loop \
reduction(+:tmp)

The compiler will perform a final reduction for(k = 0; k < size; k++)
to produce a single result using the tmp += a[i][k] * b[k][]];
specified operation c[i][j] = tmp;

NVIDIA.

REDUCTION CLAUSE OPERATORS

Operator Description Example

+ Addition/Summation reduction(+:sum)

* Multiplication/Product reduction(*:product)
max Maximum value reduction(max:maximum)
min Minimum value reduction(min:minimum)

| Bitwise or reduction(| :val)
&& Logical and reduction(&&:val)

(
(
(
(
& Bitwise and reduction(&:val)
(1
(
| | Logical or reduction(| | :val)

<X NVIDIA.

The data construct defines a region of code in which GPU arrays remain on the GPU and

DEFINING DATA REGIONS

are shared among all kernels in that region.

@ragma acc data
{

.

\

#pragma acc parallel loop

#pragma acc parallel loop

/

Arrays used within the
data region will remain on

the GPU until the end of
the data region.

<A NVIDIA.

DATA CLAUSES

All copy and create clauses behave as their “present_or” variants

copy (list) Allocates memory on GPU and copies data from host to GPU when
entering region and copies data to the host when exiting region.

copyin (list) Allocates memory on GPU and copies data from host to GPU when
entering region.

copyout (list) Allocates memory on GPU and copies data to the host when exiting
region.

create (list) Allocates memory on GPU but does not copy.

present (list) Data is already present on GPU from another containing data region.

NVIDIA.

UNSTRUCTURED DATA DIRECTIVES

Basic Example

enter data: Defines the start of an unstructured data region
clauses: copyin(list), create(list)

exit data: Defines the end of an unstructured data region
clauses: copyout(list), delete(list)

#tpragma acc enter data copyin(a[@:N],b[O:N]) create(c[O:N])

#pragma acc parallel loop

for(int 1 = ©9; 1 < N; i++){
cli] = a[1] + b[1];

}

#pragma acc exit data copyout(c[@:N]) delete(a,b)

@2 NVIDIA.

DYNAMIC DATA LIFETIMES

C
#pragma acc enter data copyin(list)
#pragma acc enter data create(list)
#pragma acc declare create(list)
Fortran
1Sacc enter data copyin(list)
ISacc enter data create(list)
ISacc declare create(list)

Starts a data lifetime (not a data region)
Data appears in present table, just as structured data does

C

#pragma acc exit data delete(list) copyout(list)
Fortran

|Sacc exit data delete(list) copyout(list)

NVIDIA.

OPENACC UPDATE DIRECTIVE

Update: Explicitly transfers data between the host and the device

Always updates, not a “present_or” operation

Useful when you want to update data in the middle of a data region
Clauses:

device: copies from the host to the device

host: copies data from the device to the host

#pragma acc update host (x[0:count])
MPI Send(x,count,datatype,dest,tag,comm) ;

NVIDIA.

UPDATE DIRECTIVE

C
#pragma acc update host(list)
#pragma acc update device(list)

Fortran
|Sacc update host(list)
|Sacc update device(list)

Data must be in a data clause for an enclosing data region
may be noncontiguous
implies present(list)
both may be on a single line
update host(list) device(list)

NVIDIA.

ARRAY SHAPING

When the compiler fails to properly determine the size of arrays

Sometimes the compiler cannot determine the size of array
Examine the -Minfo output!

Developers must specify sizes explicitly using data clauses and array “shape”

C
#pragma acc data copyin(a[0:size]), copyout(b[s/4:3%s/4])
Numbers in brackets are starting-element : number-of-elements
Fortran

ISacc data copyin(a(1:end)), copyout(b(s/4+1:3*s/4))
Numbers in parenthesis are starting-element : ending-element

Note: data clauses can be used on data, parallel, or kernels directives

NVIDIA.

SUMMARY: BASIC USE OF DATA DIRECTIVES IN OPENACC AND OPENMP

more similar than different

I OpenACC
l$acc data <clause> | Starts a structured data region

copy(list) Allocates memory on the GPU and copies data from
host to GPU when entering region and copies data to the host
when exiting region.

copyin(list) Allocates memory on the GPU and copies data from
host to GPU when entering region

copyout(list) Allocates memory on GPU and copies data to the
host when exiting region.

create(list) Allocates memory on GPU but does not copy.

l$acc enter data <clause> | Starts unstructured data region.
clause can be copyin or create

l$acc exit data <clause> ! Ends unstructured data region.
clause can be copyout or delete

l$acc update [host|self|device](list)

I OpenMP
l$omp target data<clause> | Starts a structured data region

map(tofrom:1list) Allocates memory on the GPU and copies data
from host to GPU when entering region and coplies data to the host
when exiting region.

map(to:1list) Allocates memory on the GPU and copies data from
host to GPU when entering region

map(from:1list) Allocates memory on GPU and copies data to the
host when exiting region.

map(alloc:1ist) Allocates memory on GPU but does not copy.

l$omp target enter data <clause> ! Starts unstructured data
region.

clause can be map(to:) or map(alloc:)

l$omp target exit data <clause> ! Ends unstructured data region.
clause can be map(from:) or map(delete:)

l$omp target update [to|from](list)

Slide 20

NVIDIA.

PASSING DEVICE POINTERS TO CUDA LIBRARIES IN OPENACC

Getting the compiler to pass the device pointer within a data region

' OpenACC /* OpenACC */

use curand #include “curand.h”
integer, parameter :: N=10000000, HN=10000

integer :: a(N), h(HN), i curandGenerator_t g;
integer(8) .+ nbits double rmean, sumd;
type(curandGenerator) :: g a = (float *) malloc(n*4);

istat = curandCreateGenerator(&g, CURAND RNG PSEUDO DEFAULT);

istat = curandSetStream(g, (cudaStream t)acc get cuda stream(acc_async sync));
if (istat != CURAND_STATUS_SUCCESS) printf("Error from set stream\n");

istat = curandCreateGenerator (g, CURAND RNG PSEUDO XORWOW)

I$acc data copy(a)

/* Uniform */
printf("Should be uniform around ©.5\n");
#pragma acc data copy(a[@:n], b[O:n])

{
istat = curandDestroyGenerator(g)
l$acc end data
nbits = ©
doi=1, n #pragma acc update host(a[@:n])
nbits = nbits + popcnt(a(i)) sumd = 0.0;
end do for (1 = 0; 1 < n; i++) {

if ((a[i] < @.ef) || (a[i] > 1.ef)) passing = ©;
sumd += (double) a[i];

nbits = nbits / n

print *,"Should be roughly half the bits set®, nbits)

rmean = sumd / (double) n;

Slide 21 NVIDIA.

ASYNCHRONOUS BEHAVIOR, QUEUES, STREAMS

1-1 correspondence between OpenACC async numbers and streams

I OpenACC /* OpenACC */
l$acc data create(a, b, c) ierr = 0;
ierr += cufftPlan2d(&plan2, m, n, CUFFT _R2C);
ierr = cufftPlan2D(iplanl,n,m,CUFFT_C2C) ierr += cufftPlan2d(&plan3, m, n, CUFFT C2R);
ierr = cufftSetStream(iplanl,acc get cuda stream(10)) ierr += cufftSetStream(plan2, (cudaStream t) acc get cuda stream(12));

ierr += cufftSetStream(plan3, (cudaStream t) acc get cuda stream(12));

l$acc update device(a)
float rmaxval = 0.0f;

l$acc host data use device(a,b,c) #pragma acc enter data copyin(r[@:m*n]) create(b[@:m*n],qg[@:m*n])
ierr = ierr + cufftExecC2C(iplanl,a,b,CUFFT_FORWARD) #pragma acc host data use device(r, b, q)
ierr = ierr + cufftExecC2C(iplanl,b,c,CUFFT_INVERSE) {
I$acc end host data ierr += cufftExecR2C(plan2, r, (cufftComplex *) b);
ierr += cufftExecC2R(plan3, (cufftComplex *) b, q);
I scale c }
l$acc kernels #pragma acc kernels
c =c / (m*n) {
l$acc end kernels for (int 1 = 0; 1 < n; ++i) {
for (int j = 0; j < m; ++j) {
l$acc update host(c) float x = fabs(r[i*m+j] - g[i*m+j] / (m*n));
if (x > rmaxval) rmaxval = x;
}
I Check inverse answer }
write(*,*) 'Max error C2C INV: ', maxval(abs(a-c)) }
#pragma acc exit data delete(r, b, Q) /* no copyout */

l$acc end data
printf("Max error R2C/C2R: %f\n",rmaxval);

Slide 22 NVIDIA.

USING SHARED MEMORY FOR PERFORMANCE

Using the OpenACC Cache Directive on Gang-Private Data

I CUDA Fortran I OpenACC

real(kind=8), shared :: tile(blockDim%y,blockDim%x) I$acc parallel loop gang collapse(2) vector length(16*16)
do jstart=1, n, ythreads

do jstart=(blockIdx%y-1)*blockDim%y, n, blockDim%y*gridDim%y do istart=1, n, xthreads

do istart=(blockIdx%x-1)*blockDim%x, n, blockDim%x*gridDim%Xx

i = threadIdx%x+istart !$acc loop vector collapse(2)

do jj = 1, ythreads ! 1:16
do 11 = 1, xthreads | 1:16
1 = ii+istart-1

j = threadIdx%y+jstart
if (i<n .AND. j<n) then

tile(threadIdx%y, threadIdx%x) = A(i,]j) , ..
J = JJj+jstart-1

endif if(i<n .AND. j<n) then
tile(ii,jj) = A(i,7)
call syncthreads() endif
enddo
1 = threadIdx%y+istart enddo
J = threadIdx%x+jstart l$acc loop vector collapse(2)
if (i<n .AND. j<n) then do ii = 1, xthreads
B(j,i)=tile(threadIdx%x,threadIdxxy) do jj = 1, ythreads
endif 1 = 1i+istart-1
enddo J = Jj+Jstart-1
enddo if(i<n .AND. j<n) then
B(j,i) = tile(ii,jj)
endif
enddo
enddo
enddo
enddo

I$acc end parallel

Slide 23 NVIDIA.

NVIDIA HPC GPU COMPILERS COMMONLY USED OPTIONS

-gpu=[no]managed: use CUDA managed memory

-gpu=maxregcount:<n>: Set the maximum number of registers to use on the GPU
-gpu=lineinfo: Generate GPU code line information, useful for debugging, diagnostics
-gpu=ccXY: Only generate code for compute capability XY

-gpu=autocompare: Automatically compare CPU and GPU results (PCAST)
-gpu=redundant: Run redundantly on CPU and GPU (PCAST w/manually instrumented code)

